NICE: Non-linear Independent Components Estimation

نویسندگان

  • Laurent Dinh
  • David Krueger
  • Yoshua Bengio
چکیده

We propose a deep learning framework for modeling complex high-dimensional densities via Nonlinear Independent Component Estimation (NICE). It is based on the idea that a good representation is one in which the data has a distribution that is easy to model. For this purpose, a non-linear deterministic transformation of the data is learned that maps it to a latent space so as to make the transformed data conform to a factorized distribution, i.e., resulting in independent latent variables. We parametrize this transformation so that computing the determinant of the Jacobian and inverse Jacobian is trivial, yet we maintain the ability to learn complex non-linear transformations, via a composition of simple building blocks, each based on a deep neural network. The training criterion is simply the exact log-likelihood, which is tractable, and unbiased ancestral sampling is also easy. We show that this approach yields good generative models on four image datasets and can be used for inpainting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Leaf Area in Coneflower (Echinacea purpurea L.) Using Independent Variables

Leaf area information is required in various horticultural and physiological studies and it will be more useful if done via non-destructive methods. The objective of this study was to establish equations to estimate leaf area (LA) using length (L), width (W), fresh weight (FW), dry weight (DW), length × length (L2), width × width (W2), length × width (L×W), length + width (L+W), fresh weight × ...

متن کامل

Independent Subspace Analysis can Cope with the 'Curse of Dimensionality'

We search for hidden independent components, in particular we consider the independent subspace analysis (ISA) task. Earlier ISA procedures assume that the dimensions of the components are known. Here we show a method that enables the non-combinatorial estimation of the components. We make use of a decomposition principle called the ISA separation theorem. According to this separation theorem t...

متن کامل

Optimal Estimation of Harmonic Components Using ISFLA

In this paper a novel method based on evolutionary algorithms is presented to estimate the harmonic components. In general, the optimization of the harmonic estimation process is a multi-component problem, in which evaluation of the phase and harmonic frequency is the nonlinear part of the problem and is solved based on the mathematical and evolutionary methods; while estimation of amplitude of...

متن کامل

Derivation of regression models for pan evaporation estimation

Evaporation is an essential component of hydrological cycle. Several meteorologicalfactors play role in the amount of pan evaporation. These factors are often related to eachother. In this study, a multiple linear regression (MLR) in conjunction with PrincipalComponent Analysis (PCA) was used for modeling of pan evaporation. After thestandardization of the variables, independent components were...

متن کامل

Investigation of linear and non-linear estimation methods in highly-skewed gold distribution

The purpose of this work is to compare the linear and non-linear kriging methods in the mineral resource estimation of the Qolqoleh gold deposit in Saqqez, NW Iran. Considering the fact that the gold distribution is positively skewed and has a significant difference with a normal curve, a geostatistical estimation is complicated in these cases. Linear kriging, as a resource estimation method, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1410.8516  شماره 

صفحات  -

تاریخ انتشار 2014